Determinant calculation by expanding it on a line or a column, using Laplace's formula
This page allows to find the determinant of a matrix using row reduction, expansion by minors, or Leibniz formula.
- Leave extra cells empty to enter non-square matrices.
-
You can use decimal fractions or mathematical expressions:
-
decimal (finite and periodic) fractions:
1/3
,3.14
,-1.3(56)
, or1.2e-4
-
2/3+3*(10-4)
,(1+x)/y^2
,2^0.5 (=)
,2^(1/3)
,2^n
,sin(phi)
,cos(3.142rad)
,a_1
, or(root of x^5-x-1 near 1.2)
-
matrix literals:
{{1,3},{4,5}}
-
operators:
+
,-
,*
,/
,\
,!
,^
,^{*}
,,
,;
,≠
,=
,⩾
,⩽
,>
, and<
-
functions:
sqrt
,cbrt
,exp
,log
,abs
,conjugate
,arg
,min
,max
,gcd
,rank
,adjugate
,inverse
,determinant
,transpose
,pseudoinverse
,trace
,cos
,sin
,tan
,cot
,cosh
,sinh
,tanh
,coth
,arccos
,arcsin
,arctan
,arccot
,arcosh
,arsinh
,artanh
,arcoth
,derivative
,factor
, andresultant
-
units:
rad
,deg
-
special symbols:
pi
,e
,i
— mathematical constantsk
,n
— integersI
orE
— identity matrixX
,Y
— matrix symbols
-
- Use ↵ Enter, Space, ←↑↓→, Backspace, and Delete to navigate between cells, Ctrl⌘ Cmd+C/Ctrl⌘ Cmd+V to copy/paste matrices.
- Drag-and-drop matrices from the results, or even from/to a text editor.
- To learn more about matrices use Wikipedia.